5 resultados para A. thaliana

em eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light interception is a major factor influencing plant development and biomass production. Several methods have been proposed to determine this variable, but its calculation remains difficult in artificial environments with heterogeneous light. We propose a method that uses 3D virtual plant modelling and directional light characterisation to estimate light interception in highly heterogeneous light environments such as growth chambers and glasshouses. Intercepted light was estimated by coupling an architectural model and a light model for different genotypes of the rosette species Arabidopsis thaliana (L.) Heynh and a sunflower crop. The model was applied to plants of contrasting architectures, cultivated in isolation or in canopy, in natural or artificial environments, and under contrasting light conditions. The model gave satisfactory results when compared with observed data and enabled calculation of light interception in situations where direct measurements or classical methods were inefficient, such as young crops, isolated plants or artificial conditions. Furthermore, the model revealed that A. thaliana increased its light interception efficiency when shaded. To conclude, the method can be used to calculate intercepted light at organ, plant and plot levels, in natural and artificial environments, and should be useful in the investigation of genotype-environment interactions for plant architecture and light interception efficiency. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

White clover (Trifolium repens L.) is an obligate outbreeding allotetraploid forage legume. Gene-associated SNPs provide the optimum genetic system for improvement of such crop species. An EST resource obtained from multiple cDNA libraries constructed from numerous genotypes of a single cultivar has been used for in silico SNP discovery and validation. A total of 58 from 236 selected sequence clusters (24.5%) were fully validated as containing polymorphic SNPs by genotypic analysis across the parents and progeny of several two-way pseudo-testcross mapping families. The clusters include genes belonging to a broad range of predicted functional categories. Polymorphic SNP-containing ESTs have also been used for comparative genomic analysis by comparison with whole genome data from model legume species, as well as Arabidopsis thaliana. A total of 29 (50%) of the 58 clusters detected putative ortholoci with known chromosomal locations in Medicago truncatula, which is closely related to white clover within the Trifolieae tribe of the Fabaceae. This analysis provides access to translational data from model species. The efficiency of in silico SNP discovery in white clover is limited by paralogous and homoeologous gene duplication effects, which are resolved unambiguously by the transmission test. This approach will also be applicable to other agronomically important cross-pollinating allopolyploid plant species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tomato I-3 gene introgressed from the Lycopersicon pennellii accession LA716 confers resistance to race 3 of the fusarium wilt pathogen Fusarium oxysporum f. sp. lycopersici. We have improved the high-resolution map of the I-3 region of tomato chromosome 7 with the development and mapping of 31 new PCR-based markers. Recombinants recovered from L. esculentum cv. M82 × IL7-2 F2 and (IL7-2 × IL7-4) × M82 TC1F2 mapping populations, together with recombinants recovered from a previous M82 × IL7-3 F2 mapping population, were used to position these markers. A significantly higher recombination frequency was observed in the (IL7-2 × IL7-4) × M82 TC1F2 mapping population based on a reconstituted L. pennellii chromosome 7 compared to the other two mapping populations based on smaller segments of L. pennellii chromosome 7. A BAC contig consisting of L. esculentum cv. Heinz 1706 BACs covering the I-3 region has also been established. The new high-resolution map places the I-3 gene within a 0.38 cM interval between the molecular markers RGA332 and bP23/gPT with an estimated physical size of 50-60 kb. The I-3 region was found to display almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with Arabidopsis thaliana chromosomes 1, 2 and 3. An S-receptor-like kinase gene family present in the I-3 region of tomato chromosome 7 was found to be present in the microsyntenous region of grape chromosome 12 but was absent altogether from the A. thaliana genome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strigolactones are a group of plant compounds of diverse but related chemical structures. They have similar bioactivity across a broad range of plant species, act to optimize plant growth and development, and promote soil microbe interactions. Carlactone, a common precursor to strigolactones, is produced by conserved enzymes found in a number of diverse species. Versions of the MORE AXILLARY GROWTH1 (MAX1) cytochrome P450 from rice and Arabidopsis thaliana make specific subsets of strigolactones from carlactone. However, the diversity of natural strigolactones suggests that additional enzymes are involved and remain to be discovered. Here, we use an innovative method that has revealed a missing enzyme involved in strigolactone metabolism. By using a transcriptomics approach involving a range of treatments that modify strigolactone biosynthesis gene expression coupled with reverse genetics, we identified LATERAL BRANCHING OXIDOREDUCTASE (LBO), a gene encoding an oxidoreductase-like enzyme of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. Arabidopsis lbo mutants exhibited increased shoot branching, but the lbo mutation did not enhance the max mutant phenotype. Grafting indicated that LBO is required for a graft-transmissible signal that, in turn, requires a product of MAX1. Mutant lbo backgrounds showed reduced responses to carlactone, the substrate of MAX1, and methyl carlactonoate (MeCLA), a product downstream of MAX1. Furthermore, lbo mutants contained increased amounts of these compounds, and the LBO protein specifically converts MeCLA to an unidentified strigolactone-like compound. Thus, LBO function may be important in the later steps of strigolactone biosynthesis to inhibit shoot branching in Arabidopsis and other seed plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unravelling the Musa genome allows genes and alleles linked to desired traits to be identified. Short stature and early flowering are desirable agronomic features of banana, as they are of bread wheat (Triticum aestivum). In wheat they were achieved through knowledge of the physiology and genetics of vernalization and photoperiod during development. Bananas and plantains have a facultative long-day response to photoperiod, as do wheat and wall cress (Arabidopsis thaliana). Using keyword searches of the genome of Musa acuminata 'Pahang' we found homologues of the genes of either T. aestivum or Arabidopsis that govern responses to vernalization and photoperiod. This knowledge needs to be interpreted in the context of plant development. Bananas have juvenile, mid-vegetative and reproductive phases of development. Leaf and bunch 'clocks' operate concurrently throughout the juvenile and mid-vegetative phases. In the mid-vegetative phase the plant becomes sensitive to photoperiod. Increased sensitivity to photoperiod reduces the overall pace of the bunch clock without affecting the leaf clock. Separation of the clocks changes the link between leaf number and time of flowering. The 'critical' quantitative trait for the time of flowering is the pace of the bunch clock up to bunch initiation. For bunch size it is the duration of the subsequent phase of female hand formation. Plants with either a short juvenile phase or a faster bunch clock in the mid-vegetative phase will produce fewer leaves and bunch early. In turn, independent manipulation of hand number per bunch and/or fruit per hand will provide manageable bunches with appropriate fruit size. Using published data we explore relationships between plant height, leaf number, bunch weight and hand number among bananas and plantains. Identifying and then manipulating the appropriate genes in Musa opens opportunities for earlier flowering, leading to plants with desirable agronomic qualities.